Greening Kentucky's Signature Industry: Bioretention Treatment of Runoff at the Kentucky Horse Park

Southeast Stormwater Association Annual Conference

Friday, October 16, 2015 Chattanooga, TN

Introductions

Bret Lavey, PE, ENV SP Project Manager

College of Agriculture, Food and Environment

Project Setting 2 Project Goals & Funding **3** BMPs Overview 4 Bioretention System **5** Lessons Learned Questions

1 Project Setting

Kentucky Horse Park

Project Setting

About the Horse Park:

- 1,200 Acres in Fayette/Scott Cos.
- Working Horse Farm
- Equine Theme Park
- Educational Exhibits
- Horse Shows
 - 2 Covered Arenas
 - Stadium Jumping Complex
 - Dressage Complex
- Nearly 1M visitors per year (human)
- Over 18,000 horse visitors annually

2 Project Goals & Funding

Grant Number: C9994861-06

08-06

Cane Run and Royal

ined By

Spring Watershed-Based

Plan Implementation Project: Final Report

> ubart Building ington, KY 40546-0216 (859) 218-4527

MOA Number. F02 129 0900025111 2

Project Period

Project Period: October 1, 2012 - December 31, 2013

Work performed by UK as part of the Cane Run and Royal Spring Watershed-Based Plan

Project Goals & Funding

Funding:

- USEPA 319 Grant through the Kentucky Division of Water
- About \$1M

<u>Goals:</u>

- Improve water quality by implementing management strategies as directed by the WBF
- Continue an information/education (I/E) component to support public participation and build management capacity related to adopted management measures.

3 BMPs Overview

30k

Cubic yards of horse muck (manure/straw mixture) is produced by the horses at the Park each year. Muck management is the no. 1 water quality priority at the Park.

Bioswales

Headcut repaired with rocked bioswale

Rain Gardens

Repaired watering stations

Covered Muck Storage Shed

Streambank Stabilization

DGA Pads for Heavy Use Areas

Straw huts (in lieu of spreading on ground)

Riparian Buffers

Curbing around gravel lot/concrete forebay for gravel collection/cleanout

DGA Dry Lot

Pond bank stabilization

Pond dredging

4 Bioretention Overview

4. Compacted Clay at Upper End of Basin with Elongated Overland Flow Path to Promote Sunlight Exposure/UV Treatment

5. Runoff Infiltrates into the Amended Soil/Filter. A Stop-Log Structure Controls the Groundwater Level in the Basin. Runoff is Collected with 6" Perforated HDPE Underdrain Pipes. Basin is Designed to Drain in <48 hours.

6. Excess Ponding (>1.5' deep) is Controlled by the Principal Spillway, and the 20' Wide Emergency Spillway.

Flow Towards Cane Run

Relocated Fence

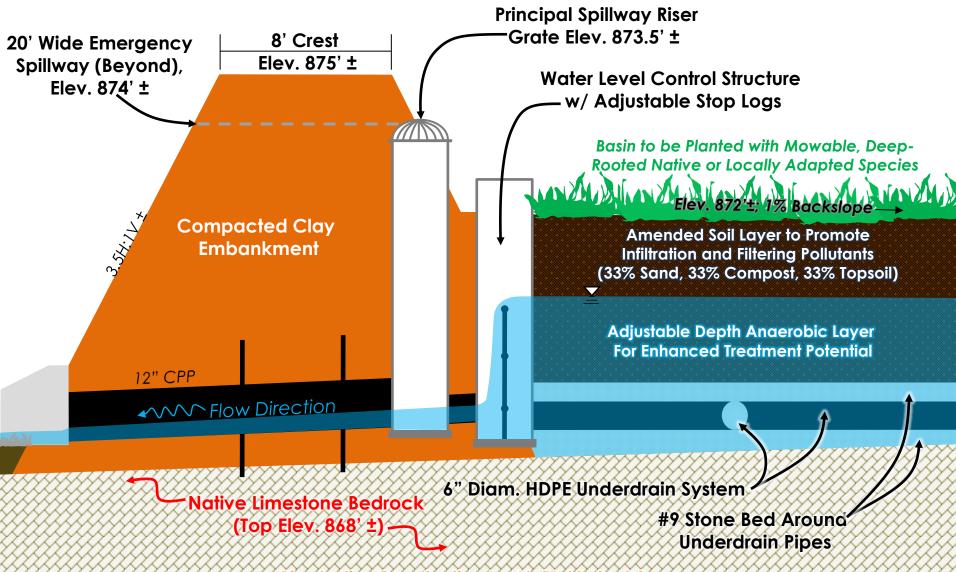
3. Native Limestone Forebay to Collect Muck/Sediment

Horse Washing

-1. Barn Outfall (18" CPP): Drainage Area = 6.4 acres Impervious Area = 4.3 acres, 67% Water Quality Volume = 0.59 acre-feet 100-yr, 24-hr Runoff Vol. = 2.3 acre-feet Basin Volume = 0.46 acre-feet

Compacted Clay Embankment w/ 8' Crest

Gravel Parking Lot —


-New Concrete Curbing to Prevent Erosion into Basin

-New Speed Hump

Repaired Headcut with Native Limestone Channel

Ning Bonnie Bo

Bioretention Basin Plan View(Not to Scale)

Bioretention Cross Section A – A' (Not to Scale)

Lessons Learned

Research Findings:

- **30,000+ gpd** inflow on dry days
- *E. coli* → **96% to 99%** reduction
 - (10 events)
- Phosphate \rightarrow 95% to 97% red.
 - (3 events)
- TKN \rightarrow 22% to 89% reduction
 - (6 events)

Lessons Learned:

- Effective treatment method
- Understand loading rates
 - Flow, contaminants (e.g., detergents)
- Understand forebay req'ts
 - Sizing, cleaning frequency, access, etc.

Questions?

Bret Lavey, PE, ENV SP bret.lavey@stantec.com

AND ALL AND HALL